1) ensemble de définition :
D de F = R/{6}
2) Dans le repère (A; i,j) : | dans le repère (O;i,j)
point M de coordonnées (x,y) | poit M de coordonées (X;Y)
point O -------------------(6;4) | point O -----------------(0;0)
x = X +6
y = Y+ 4
soit G la fonction tel que g(X) = 1/16(X-6)au cube + 4.
Y= 1/16(X+6) + 4 est équivalent à y+4 = 1/16(x+6-6) au cube + 4 est équivalent à
y = 1/16xau cube.
G est centré en 0. pour tout X appartennant a Dg il existe un -X appartement a Dg.
Etude de la parité de "G" (putain de correcteur a la con) :
f(x) = 1/16X au cube
f(-X) = 1/16X au cube.
F(-x) = - F(X) donc j'ai est impair et admet pour centre de symétire o (6;4)
ENFIN !